
Operating Systems

LECTURE-10

The Critical-Section
Problem

2

Cooperating Processes

• Introduction to Cooperating Processes

• Producer/Consumer Problem

• The Critical-Section Problem

• Synchronization Hardware

• Semaphores

3

The Critical-Section Problem

• n processes competing to use some shared data.

• No assumptions may be made about speeds or

the number of CPUs.

• Each process has a code segment, called

Critical Section (CS), in which the shared data

is accessed.

• Problem – ensure that when one process is

executing in its CS, no other process

is allowed to execute in its CS.

4

CS Problem Dynamics (1)

• When a process executes code that manipulates
shared data (or resource), we say that the
process is in it’s Critical Section (for that
shared data).

• The execution of critical sections must be
mutually exclusive: at any time, only one
process is allowed to execute in its critical
section (even with multiple processors).

• So each process must first request permission
to enter its critical section.

5

CS Problem Dynamics (2)

• The section of code implementing this request is

called the Entry Section (ES).

• The critical section (CS) might be followed by a

Leave/Exit Section (LS).

• The remaining code is the Remainder Section (RS).

• The critical section problem is to design a protocol

that the processes can use so that their action will not

depend on the order in which their execution is

interleaved (possibly on many processors).

6

Solution to Critical-Section Problem

• There are 3 requirements that must stand for a

correct solution:

1. Mutual Exclusion

2. Progress

3. Bounded Waiting

• We can check on all three requirements in

each proposed solution, even though the

non-existence of each one of them is enough

for an incorrect solution.

7

Solution to CS Problem – Mutual Exclusion

1. Mutual Exclusion – If process Pi is executing

in its critical section, then no other processes

can be executing in their critical sections.

• Implications:

 Critical sections better be focused and short.

 Better not get into an infinite loop in there.

 If a process somehow halts/waits in its critical

section, it must not interfere with other processes.

8

Solution to CS Problem – Progress

2. Progress – If no process is executing in its

critical section and there exist some processes

that wish to enter their critical section, then

the selection of the process that will enter the

critical section next cannot be postponed

indefinitely:

• If only one process wants to enter, it should be

able to.

• If two or more want to enter, one of them should

succeed.

9

Solution to CS Problem – Bounded Waiting

3. Bounded Waiting – A bound must exist on

the number of times that other processes are

allowed to enter their critical sections after a

process has made a request to enter its critical

section and before that request is granted.

• Assume that each process executes at a nonzero

speed.

• No assumption concerning relative speed of the n

processes.

10

Types of solutions to CS problem

• Software solutions –

– algorithms who’s correctness does not rely on any
other assumptions.

• Hardware solutions –

– rely on some special machine instructions.

• Operating System solutions –

– provide some functions and data structures to the
programmer through system/library calls.

• Programming Language solutions –

– Linguistic constructs provided as part of a language.

Semaphores

 Semaphore is a type of generalized lock

– Defined by Dijkstra in the last 60s

– Main synchronization primitives used in UNIX

– Consist of a positive integer value

– Two operations

P(): an atomic operation that waits for semaphore
to become positive, then decrement it by 1

V(): an atomic operation that increments
semaphore by 1 and wakes up a waiting thread at
P(), if any.

Semaphores vs. Integers

No negative values

Only operations are P() and V()
–Cannot read or write semaphore values

–Except at the initialization times

Operations are atomic
–Two P() calls cannot decrement the

value below zero

–A sleeping thread at P() cannot miss a
wakeup from V()

Binary Semaphores

A binary semaphore is initialized to
1

P() waits until the value is 1

–Then set it to 0

 V() sets the value to 1

– Wakes up a thread waiting at P(), if any

Two Uses of Semaphores

1. Mutual exclusion

–Lock was designed to do this

lock->acquire();

// critical section

lock->release();

Two Uses of Semaphores

1. Mutual exclusion
1. The lock function can be realized with a

binary semaphore: semaphore subsumes
lock.
Semaphore has an initial value of 1
P() is called before a critical section
V() is called after the critical section

semaphore litter_box = 1;

P(litter_box);

// critical section

V(litter_box);

Two Uses of Semaphores

1. Mutual exclusion

–Semaphore has an initial value of 1

–P() is called before a critical section

–V() is called after the critical section

semaphore litter_box = 1;

P(litter_box);

// critical section

V(litter_box);

litter_box = 1

Two Uses of Semaphores

1. Mutual exclusion

–Semaphore has an initial value of 1

–P() is called before a critical section

–V() is called after the critical section

semaphore litter_box = 1;

P(litter_box); // purrr…

// critical section

V(litter_box);

litter_box = 1  0

Two Uses of Semaphores

1. Mutual exclusion

–Semaphore has an initial value of 1

–P() is called before a critical section

–V() is called after the critical section

semaphore litter_box = 1;

P(litter_box);

// critical section

V(litter_box);

litter_box = 0

Two Uses of Semaphores

1. Mutual exclusion

–Semaphore has an initial value of 1

–P() is called before a critical section

–V() is called after the critical section

semaphore litter_box = 1;

P(litter_box); // meow…

// critical section

V(litter_box);

litter_box = 0

Two Uses of Semaphores

1. Mutual exclusion

–Semaphore has an initial value of 1

–P() is called before a critical section

–V() is called after the critical section

semaphore litter_box = 1;

P(litter_box);

// critical section

V(litter_box);

litter_box = 0 1

Two Uses of Semaphores

2. Synchronization: Enforcing some order
between threads

 T1 T2

 do X

 wait for X

 do Y

 wait for Y

 do Z

 wait for Z

 ……

Two Uses of Semaphores

2. Synchronization
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

wait

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0 1

wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 1  0

wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

wait

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0 1

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 1  0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;

semaphore wait_right = 0;

Left_Paw() { Right_Paw() {

 slide_left(); P(wait_left);

 V(wait_left); slide_left();

 P(wait_right); slide_right();

 slide_right(); V(wait_right);

} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Synchronization
–Semaphore usually has an initial value

of 0

semaphore s1 = 0;

semaphore s2 = 0;

A() { B() {

 write(x); P(s1);

 V(s1); read(x);

 P(s2); write(y);

 read(y); V(s2);

} }

 do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 critical section

 flag[i] = FALSE;

 remainder section

 } while (TRUE);

 Provable that

1. Mutual exclusion is preserved

Algorithm for Process Pi

Synchronization

Hardware(Language mechanism

for Synchronism)  Many systems provide hardware support for critical section
code

 Uniprocessors – could disable interrupts

– Currently running code would execute without
preemption

– Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware
instructions

 Atomic = non-interruptable

– Either test memory word and set value

– Or swap contents of two memory words

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

Solution to Critical-section

Problem Using Locks

TestAndSet Instruction

Definition:

 boolean TestAndSet
(boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

Solution using TestAndSet

 Shared boolean variable lock, initialized to FALSE

 Solution:

 do {

 while (TestAndSet (&lock))

 ; // do nothing

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

Swap Instruction

Definition:

 void Swap (boolean *a,
boolean *b)

 {

 boolean temp = *a;

 *a = *b;

 *b = temp:

 }

Solution using Swap

 Shared Boolean variable lock initialized to FALSE; Each
process has a local Boolean variable key

 Solution:

 do {

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

43

ASSIGNMENT

• Q: What are the necessary conditions required

for critical section problem solution?

