Operating Systems

LECTURE-10

The Critical-Section
Problem

Cooperating Processes
c--

» Introduction to Cooperating Processes
* Producer/Consumer Problem

* The Critical-Section Problem
 Synchronization Hardware

« Semaphores

The Critical-Section Problem
G

* N processes competing to use some shared data.

* No assumptions may be made about speeds or
the number of CPUs.

 Each process has a code segment, called
Critical Section (CS), in which the shared data
IS accessed.

* Problem — ensure that when one process IS
executing In its CS, no other process @

IS allowed to execute In i1ts CS. -«
—

CS Problem Dynamics (1)

c]
» When a process executes code that manipulates

shared data (or resource), we say that the

process 1s 1n 1t’s Critical Section (for that
shared data).

* The execution of critical sections must be
mutually exclusive: at any time, only one
process Is allowed to execute In its critical
section (even with multiple processors).

» S0 each process must first request permission
to enter Its critical section.

CS Problem Dynamics (2)
-

« The section of code implementing this request is
called the Entry Section (ES).

 The critical section (CS) might be followed by a
Leave/EXit Section (LS).

* The remaining code is the Remainder Section (RS).

 The critical section problem is to design a protocol
that the processes can use so that their action will not
depend on the order in which their execution iIs
Interleaved (possibly on many processors).

Solution to Critical-Section Problem

S
« There are 3 requirements that must stand for a

correct solution:
1. Mutual Exclusion ®

2. Progress
3. Bounded Waiting \y
« We can check on all three requirements in
each proposed solution, even though the

non-existence of each one of them is enough
for an incorrect solution.

Solution to CS Problem — Mutual Exclusion
N

1. Mutual Exclusion — If process P; Is executing
In Its critical section, then no other processes
can be executing in their critical sections.

* Implications:
» Critical sections better be focused and short.
» Better not get into an infinite loop In there.

» |If a process somehow halts/waits in its critical
section, It must not interfere with other processes.

Solution to CS Problem — Progress

2.

Progress — If no process Is executing In its
critical section and there exist some processes
that wish to enter their critical section, then
the selection of the process that will enter the
critical section next cannot be postponed
Indefinitely:

If only one process wants to enter, it should be

able to.

If two or more want to enter, one of them should
succeed.

Solution to CS Problem — Bounded Waiting
-

3. Bounded Waiting — A bound must exist on
the number of times that other processes are
allowed to enter their critical sections after a

process has made a request to enter its critical
section and before that request is granted.

« Assume that each process executes at a nonzero
Speed.

* No assumption concerning relative speed of the n
processes.

Types of solutions to CS problem

o]
o Software solutions —

— algorithms who’s correctness does not rely on any
other assumptions.

« Hardware solutions —
— rely on some special machine instructions.

 Operating System solutions —

— provide some functions and data structures to the
programmer through system/library calls.

» Programming Language solutions —
— Linguistic constructs provided as part of a language.

Semaphores

o Semaphore. is a type of generalized lock
— Defined by Dijkstra in the last 60s
— Main synchronization primitives used in UNIX
— Consist off a positive integer value

— [I\WOe Operations

& P(): an atomic operation that Walts: fior SEmaphore
Lo become positive, then decrement It by, 1

o V()): an atomic operation that Increments
semaphore by 1iand Wakes Upra Walting thread at
POy IiFanys:

Semaphores vs. Integers

» No negative values

¢ Only operations are P() and V()
— Cannot read or write semaphore values
— EXcept at the initialization times

¢ Operations are atomic

—woe PO callstcannot decrement the
Valluerbelow: Zero

—Alsleeping threadrat P(Orcannoet miss a
Wakeup: from V{5

Binary Semaphores

¢ A binary semaphore is initialized to
1

¢ P() waits until the value is 1
— [[hen set it to 0

¢ V() sets the value to 1
—\Wakes up a thread waitinglat P(), Iiany.

Two Uses of Semaphores

1. Mutual exclusion
— Lock was designed to do this

,o_[]

//. critical section
lock->release() ;

Two Uses of Semaphores

1. Mutual exclusion
1. The lock function can be realized with a
binary. semaphore: semaphore subsumes

lock.

& Semaphore has an initial value of 1
o P() Is called before a critical section
¢ /() Is called after the critical section

1;

semaphore IIitter box
P(IItter box);
//. critical section
VA(LItter box);

Two Uses of Semaphores

1. Mutual exclusion
— Semaphore has an initial value of 1
— P() Is called before a critical section
—\/(0) Is called afiter the critical section

semaphore Iitter box 1;

P(1litter box) \ litter_box =1

//. critical section
VAT EEer box)

Two Uses of Semaphores

1. Mutual exclusion
— Semaphore has an initial value of 1
— P() Is called before a critical section
—\/(0) Is called afiter the critical section

semaphore litter box 1;

P(LStter box)/ Y/ PULLL. = litter box = 1 > 0

//. critical section
VAT EEer box)

2 N/ critical section

Two Uses of Semaphores

1. Mutual exclusion
— Semaphore has an initial value of 1
— P() Is called before a critical section
—\/(0) Is called afiter the critical section

semaphore Iitter box 1;

P(LITCter box)

/ litter_box = 0

VAT EEer box)

Two Uses of Semaphores

1. Mutual exclusion
— Semaphore has an initial value of 1
— P() Is called before a critical section
—\/(0) Is called afiter the critical section

semaphore Iitter box 1;

P(L3itter box)/ // meow:.. < litter box = 0

//hcritical section

VAT EEer box)

Two Uses of Semaphores

1. Mutual exclusion
— Semaphore has an initial value of 1
— P() Is called before a critical section
—\/(0) Is called afiter the critical section

semaphore Iitter box 1;

P(IITCter box)

= litter box = 0 >1
// critical Sect‘j/
FHS v (Litter box) ;

Two Uses of Semaphores

2. Synchronization: Enforcing some order
between threads

Two Uses of Semaphores

2. Synchronization

— Semaphore usually has an initial value
of 0

semaphore wait left = 07
semaphore wait right = 07

Left Paw() { Right Paw()" {
slide J1eft() P(wait left)y
VA(wait lett)s slide Tef ()
Pwait right) slideraghtil)’

slide rIighti() Vi(wait right)
))

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 0; wait_left = 0
semaphore wait right = 05 / wait_right = 0
Left Paw() { Right Paw()" {

slide deft() Pwait 1eft)s

VA(wait lett)s; slide Tef ()N

Pwait right) sidderaghitil)

siide rIighti) VA(wait right)
¥ ¥

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 07 wait_left = 0
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Pawi()" o

siide Teft ()’ P(wailt left)y

VA(wait lett)s; slide Tef ()N

Pwait right) sidderaghitil)

siide rIighti) VA(wait right)

¥ }
ogo 020

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 07 wait_left = 0
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Paw()" {

slide deft() Pwast let)

VA(wait lett)s; slide Tef ()N

Pwait right) sidderaghitil)

siide rIighti) VA(wait right)

¥ ¥ :
walt
o w o

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 07 wait_left = 0
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Paw()" {

slide et Pwast let)

VA(wait lett)s; slide Tef ()N

Pwait right) sidderaghitil)

siide rIighti) VA(wait right)

¥ }
020 020

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 0; wait_left = 0 >1
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Paw()" {

slide deft() Pwast let)

VA(waL thlett)sr slide Tef ()N

Pwait right) sidderaghitil)

siide rIighti) VA(wait right)

¥ }
020 020

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value

off 0
semaphore wait left = 0; wait_left =1 >0
semaphore wait right = 07 wait_right = 0
Left Paw() { Right Paw()" {

slide deft()

V(wait left) ; —
Pwait right)

siide rIghti(()};

Pwast let)
slide Tef ()N
sidderaghitil)
VA(wait right)

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 07 wait_left = 0
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Paw()" {

siide Teft ()’ P(wait lefit)y

VA(waL thlett)sr sigde et t(()

Pwait right) sidderaghitil)

siide rIighti) VA(wait right)

¥ }
020

ogo

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 07 wait_left = 0
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Paw()" {

siide Teft ()’ P(wait lefit)y

VA(wait lett)s; sigde et t(()

PAwait raightt) sidderaghitil)

siide rIighti) VA(wait right)

} . }
walt
e

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 07 wait_left = 0
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Paw()" {

slide deft() Pwait 1eft)s

VA(wait lett)s; slide Tef ()N

PAwait raightt) sidderaghtil)

siide rIighti) VA(wait right)

¥ }
020 020

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 0; wait_left = 0
wait_right = 0 =>1

semaphore wait right = 07

Left Paw() { Right Paw()" {
slide left|()" P(wait left)y
VA(wait lett)s; slide Tef ()N
PAwait raightt) sidderaghitil)
siide rIighti) VAwait rIightt)y

¥ }
020 020

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 0; wait_left = 0
wait_right =1 >0

semaphore wait right = 07

Left Paw() { Right Paw()" {
slide left|()" P(wait left)y
VA(wait lett)s; slide Tef ()N
PAwait raightt) sidderaghitil)
siide rIighti) VAwait rIightt)y

))

020 020

Two Uses of Semaphores

2. Scheduling

— Semaphore usually has an initial value
of 0

semaphore wait left = 07 wait_left = 0
semaphore wait right = 0; wait_right = 0
Left Paw() { Right Paw()" {

slide Teft () P(wait lefit)y

VA(wait lett)s; slide Tef ()N

Pwait right) sidderaghitil)

s1T3derIghti() VAwait rIightt)y

¥ }
ogo 020

Two Uses of Semaphores

2. Synchronization

— Semaphore usually has an initial value
of 0

semaphore sl
semaphore s2

A { Bi() {
wraite (x) ; ’//”/,// P(sl) ;
V(sl) readi(x):;
\\\\\\\\\ write (y) ;
Vi (s2) ;

P(s2) ;
read(y); |
))

Algorithm for Process

urn = j;

while (flag[j] && turn == j),
critical section

flag[i] = FALSE;

remainder section
+ while (TRUE);
, Provable that‘ :

\Jyl INVIE T UL TILCARUIVL]

Hardware(Language mechanism
¢ Many syst@!pr&&d@&hha‘?&ﬂé%)ritical section

code

¢ Uniprocessors — could disable interrupts

— Currently running code would execute without
preemption

— Generally too inefficient on multiprocessor: systems
o Operating systems using this not broadly scalable

o Modern machines provide special atomic hardware
INSErUCtionS

& Atomic = non-interruptable
— Either test memory, Word and set value
— Or sWap! CONLENLS: Bff WO MEM O, WOrAS

Solution to Critical-section
Problem Using Locks

release lock
remainder section
+ while (TRUE);

TestAndSet Instruction

¢ Definition:

Doolean TestAnc
(boolean *target)

{

boolean rv = *target;

*target = TRUE;
return rv:

Solution using TestAndSet

¢ Shared boolean variable lock, initialized to FALSE
¢ Solution:

; // do nothing
// critical section
lock = FALSE;
// remainder section

} while (TRUE);

Swap Instruction

¢ Definition:

boolean *b)

{

boolean temp = *a;

*a = *p:
*b = temp:

Solution using Swap

¢ Shared Boolean variable lock initialized to FALSE; Each
process has a local Boolean variable key.

¢ Solution:

Swap (&lock, &key),
// critical section
lock = FALSE;
// remainder section

+ while (TRUE);

ASSIGNMENT
c]
* Q: What are the necessary conditions required

for critical section problem solution?

